Dynamic Scene Generation, Multimodal Sensor Design, and Target Tracking Demonstration for Hyperspectral/Polarimetric Performance-Driven Sensing
نویسندگان
چکیده
Simulation of moving vehicle tracking has been demonstrated using hyperspectral and polarimetric imagery (HSI/PI). Synthetic HSI/PI image cubes of an urban scene containing moving vehicle content were generated using the Rochester Institute of Technology’s Digital Imaging and Remote Sensing Image Generation (DIRSIG) Megascene #1 model. Video streams of sensor-reaching radiance frames collected from a virtual orbiting aerial platform’s imaging sensor were used to test adaptive sensor designs in a target tracking application. A hybrid division-of-focal-plane imaging sensor boasting an array of 2×2 superpixels containing both micromirrors and micropolarizers was designed for co-registered HSI/PI aerial remote sensing. Pixel-sized aluminum wire-grid linear polarizers were designed and simulated to measure transmittance, extinction ratio, and diattenuation responses in the presence of an electric field. Wire-grid spacings of 500 [nm] and 80 [nm] were designed for lithographic deposition and etching processes. Both micromirror-relayed panchromatic imagery and micropolarizer-collected PI were orthorectified and then processed by Numerica Corporation’s feature-aided target tracker to perform multimodal adaptive performance-driven sensing of moving vehicle targets. Hyperspectral responses of selected target pixels were measured using micromirror-commanded slits to bolster track performance. Unified end-to-end track performance case studies were completed using both panchromatic and degree of linear polarization sensor modes.
منابع مشابه
Defining a process to fuse polarimetric and spectral data for target detection and explore the trade space via simulation
A process is developed to assess the effect of fusing polarimetric and spectral sensing modalities for an urban target detection scenario through simulation with the Digital Imaging and Remote Sensing Image Generation (DIRSIG) model. Two novel multimodal fusion algorithms are proposed—one for the pixel level, and another for the decision level. A synthetic urban scene is validated to ensure the...
متن کاملAssessing the impact of spectral and polarimetric data fusion via simulation to support multimodal sensor system design requirements
A series of trade studies was carried out using the Digital Imaging and Remote Sensing Image Generation (DIRSIG) model to assess how varying the spectral signal-to-noise ratio (SNR), spectral ground sample distance (GSD), or target spectrum affected the impact of spectral and polarimetric data fusion via the spectral polarimetric integration (SPI) algorithm for a notional multimodal sensor. Whe...
متن کاملSensor Modeling and Demonstration of a Multi-Object Spectrometer for Performance-Driven Sensing
A novel multi-object spectrometer (MOS) is being explored for use as an adaptive performance-driven sensor that tracks moving targets. Developed originally for astronomical applications, the instrument utilizes an array of micromirrors to reflect light to a panchromatic imaging array. When an object of interest is detected the individual micromirrors imaging the object are tilted to reflect the...
متن کاملDISSERTATION RELEASE PERMISSION ROCHESTER INSTITUTE OF TECHNOLOGY CHESTER F. CARLSON CENTER FOR IMAGING SCIENCE Title of Dissertation: Polarimetric remote sensing system analysis: DIRSIG model validation and impact of polarization phenomenology on material discriminability
In addition to spectral information acquired by traditional multi/hyperspectral systems, passive electro optical and infrared (EO/IR) polarimetric sensors also measure the polarization response of different materials in the scene. Such an imaging modality can be useful in improving surface characterization; however, the characteristics of polarimetric systems have not been completely explored b...
متن کاملAdaptive Optical Sensing in an Object Tracking DDDAS
The generalized optical remote sensing tracking problem for an object moving in a dynamic urban environment is complex. Two emerging capabilities that can help solve this problem are adaptive multimodal sensing and modeling with data assimilation. Adaptive multimodal sensing describes sensor hardware systems that can be rapidly reconfigured to collect the appropriate data as needed. Imaging of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010